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Abstract

Most age-structured stock assessment models aentlyrbased on a penalized
likelihood approach. Specification or estimatidrstandard deviations for randomly time-
varying parameters in such models has been deda#ene of the outstanding problems in
contemporary stock assessment. A two-step prdoegsoducing such models is assumed here,
where the standard deviations are first estimayesbine approach that may or may not be based
on penalized likelihood, following which those esdites are treated as known constants in a
model based on penalized likelihood, regardlesbefpproach used to obtain those estimates.
Three different likelihood “approaches” for estigtthe standard deviations are considered
here—penalized, marginal, and restricted—each a¢lwproduces an “estimator.” Several
“methods” are presented for obtaining the variaisr@ators, including numeric maximization,
iteration, recursion, closed-form solutions, Laplapproximation, and reverse-engineering. A
linear-normal model is used as the example systeoughout, because it is easy to comprehend
and especially tractable. Consideration is giwethtee “cases:” multivariate with time-varying
observation error variance, multivariate with canstobservation error variance, and univariate
with constant observation error variance. Fodater, closed-form equations for several
distributions are provided, such as the probabdftgchieving a false positive (finding time
variability where no such variability actually etss the probability of achieving a false negative
(finding no time variability where such variabiliactually does exist), and the relative
magnitudes of the estimators conditional on achgwa false positive or not achieving a false
negative. As has been recognized previously, émalzed likelihood estimator is biased
downward. Here, a closed-form expression is peithr the relationship between the

penalized likelihood and marginal likelihood estiora in the univariate case of the linear-
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normal model with constant observation error varganAlthough all of the estimators and
methods are derived from the linear-normal modstheanethod’s potential for extension to

nonlinear/non-normal models is also discussed.
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1. Introduction

It is standard practice for statistical age-streeiuassessments of marine fish stocks to
allow at least some parameters, such as recruitamehthe fishing mortality rate, to vary over
time (Maunder and Punt 2013). Time-variabilityécruitment (and sometimes fishing
mortality) is often modeled as a random processrayifrom some statistical distribution, as
distinguished from estimating each annual recruitimar fishing mortality rate, as a free
parameter. Recently, there has been increasaéshia allowing other parameters to vary
randomly with time as well, for example the catdhigbcoefficient (Wilberg and Bence, 2006,
Wilberg et al. 2010), selectivity parameters (Midad Stewart 2014), the natural mortality rate
(Jiao et al. 2012, Johnson et al. 2015), and grpathmeters (Thorson and Minte-Vera in
press). Although some alternatives have receminteveloped (e.g., Gudmundsson and
Gunnlaugsson 2012, Mantyniemi et al. 2013, Nietsssh Berg 2014), the vast majority of
commonly used age-structured assessment softwekages estimate randomly time-varying
guantities using a “penalized likelihood” approddbfined in section 3.1 below). Examples
include: A-SCALA (Maunder and Watters 2003), AMABogded by James lanelli
http://nft.nefsc.noaa.gov/AMAK.html, Lowe et al. 24), ASAP (Legault and Restrepo 1998,
Legault 2012), BAM (Craig 2012, Williams and Shert2015), CASAL (Bull et al. 2012),
Coleraine (Hilborn et al. 2003, Magnusson and Hitb2007), ISCAM (Matrtell and Lima 2014,
Martell and Stewart 2014), MULTIFAN-CL (Fournier &t 1998, Hampton and Fournier 2001,
Kleiber et al. 2012), and Stock Synthesis (Methmat Wetzel 2013).

The packages listed above typically require the tesepecify a standard deviation (or
variance, or coefficient of variation) for eachdamly time-varying parameter. The main

exception is the standard deviation of log-scateuiement, which can be estimated internally in
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a few packages, such as BAM, CASAL, and Stock S3sish Either alternative (user
specification or internal estimation) will causelplems if: 1) the user specifies the “wrong”
value, or 2) the internal estimator is biased. ©xample of the former, which is frequently of
concern to stock assessment review panels, isasgewhere the user specifies a significant
amount of time-variability in a parameter that atfyshould exhibit none at all
(“overparameterization”). With regard to the latiaternal estimation does not necessarily
imply unbiasedestimation, and some possible estimators maydfenable to others. Overall,
specification/estimation of variances for randonntye-varying parameters has proven to be a
weak point in many stock assessments, leading Mauwrtd Piner (2015) to list this as one of
the outstanding problems in contemporary fishestesk assessment.

The objective of this paper is to review some efttiieory and methods dealing with this
problem. Because terminology in this area of neteaan be confusing, care will be taken to
show how the various estimators relate to one anpbuilding upon previous systematizations
such as that of Thorson et al. (2015). A lineammed model (defined in section 2.2 below) will
be used as the example system throughout, bedaassasy to comprehend and especially
tractable.

2. Preliminaries
2.1. Notation and frequently used functions

The following notational conventions will be obsedv

* Functions, random variables, and integer constaetslenoted by Roman letters (Table
la); parameters and non-integer constants by Geéeks (Table 1b)

* Vectors and matrices are denoted by bold fontassdly italic font

» Scalars and vectors are shown in lower case; meattipper case

5
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Example:w; represents elemenof vectorw

Examplew;; represents elemenitf} of matrix W
Example:w; represents columnof matrix W
Example:W; represents elemenbf a vector of matrices
I (n) represents thiexn identity matrix

z(n) represents thiex1 vector of zeros

Exceptions to the above conventions include comynoséd function names such as

In(D}, diag(), andr (0, which will be written in regular (non-italic) fi.

Both multivariate and univariate cases will be ¢desed in this paper. Names and

definitions of statistical function definitions ftne multivariate case include the following:

Log of multivariate normal probability density furan f.,,, for n-dimensional random

variablew with nx1 mean vectop andnxn covariance matriZ:

_n[l]n(2E?7)+In(|>2|)+(w—p)'[):_1 [w —p)

il 2)- 2 |

Vector of row means afxn matrix W':

n
m(W), where each elementl,2, ...n takes the forn{%j > Wi
=1

Row-wise covariance matrix o<n matrix W:

Vh(W), where each elemenit{l,2,...n; j=1,2,...n} takes the form

1 n 1 D” 1 D”
(HJ%W (ﬁj ZWJ[@W (;] ZWJ

and where 0 and 1 are conventional values for

6
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Analogues of the above for the univariate casasat®llow:

Log of univariate normal probability density furantif,; for scalar random variabie

with scalar meap and scalar variancg?:

In(2 DT)+In(02)+ (w-p)?

|n(funi(w‘ﬂ,02)) - : o2

Scalar mean afx1 vectorw:

m(w)=[%jmi W .

i=1

Scalar variance afx1 vectorw:

Vi (W) = (ihj [E; (w - m(w))2 .

- i=1

2.2. The linear-normal model

Although more general forms can be imagined (éayrd and Ware 1982), the following

version of the linear-normal model will be suffictey general for the purposes of this paper:

* X is annfacxnobsvariable matrix

e (is anndimx1 constant vector

* Qs annfacxndim constant (“design”) matrix

* For eacltk=1,2,...nobs yx (a column of th@dimxnobsmatrixY) is anndimx1
vector related tag (a column of thexdimxnobsmatrix X) by yx = {+Q' X

* For eactk=1,2,...nobs the observed value gf, yobs, (a column of theadimxnobs
matrix Y obs), is anndimx1 vector related tgy by yobs, = yx+&x, wheregx (a column
of thendimxnobsmatrix E) is a multivariate normal random variable withimx1

7
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mean vector(ndim) andndimxndim covariance matriZex (assumed known unless
otherwise specified).

Now, suppose that the value of eaglis unknown (or, worse, that even the identities of
thenfacscalar variables comprising each vectpare unknown), or that the value of eaglis
known, but is simply a single realization of a kfgppulation of potentiad values. In such
cases, it is appropriate to view eagtas arandomvector. For simplicity, it will be assumed
throughout this paper that these random vectorsaitvariate normal, with constant mean
vectorpx and constant covariance matkx, in which case the following conditions hold:

» Eachyg is multivariate normally distributed with mepg = {+Q'[jix and covariance

matrix 2y = Q'[Ix[Q.

» Eachyobs is multivariate normally distributed with megg and covariance matrix

2E+2Yy.

For eactk=1,2,...n, a vector of deviationgy (a column of thedinxnobsmatrixA),
will be defined as the difference betwegmandpy. Eachd can be thought of as a vector of
random effectsbecause they are multivariate random variableégewy can be thought of as a
vector offixed effectsbecause it is a constant (e.g., Davidian andn@iit2003). Becaus&
andyy differ by only an additive consta® has the same covariance matriyasEven though
the covariance matrices are the same, it will besenient to add the redundant symhdl(=Zy)
to emphasize the fact that this matrix is indepahdéthe fixed effects. Because thdimxndim
matrix 28 is symmetric, it involves onlgdimx(ndim+1)/2 parameters. To emphasize this fact, it
will typically be written a&&(ad,pd), wheregd is anndimx1 constant vector of standard

deviations angd is anndinmx(ndim-1)/2 constant vector of correlation coefficients.
8
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2.3. Structure of the presentation

A two-step process for producing stock assessmedels is assumed here, whe
andpd are first estimated by some approach that mayay mot be based on penalized
likelihood, following which those estimates areatexl as known constants in a model based on
penalized likelihood, regardless of the approaddus obtain those estimates. Three different
likelihood “approaches” for estimating the standdestiations are considered here—penalized,
marginal, and restricted—each of which produce®eatimator.” Several “methods” are
presented for obtaining the various estimatorduding numeric maximization, iteration,
recursion, closed-form solutions, Laplace approxioma and reverse-engineering.
Consideration is given to three “cases:” multiveiaith time-varying observation error
variance (i.e., the general case described inrbeeging section), multivariate with constant
observation error variance, and univariate withstant observation error variance. The
approaches/estimators, methods, and cases are sizeuina Table 2.

Equations and algorithms that are referenced sulesgly in the document are numbered
sequentially as they are introduced, except thaatons and algorithms corresponding to the
multivariate case with time-varying observatioroewariance have numbers of the form “x,”
eguations and algorithms for the multivariate cagk constant observation error variance have
numbers of the form “x.1,” and equations and alfpons for the univariate case with constant
observation error variance is have numbers ofdhma f'x.2.”

3. Developing thelikelihoods

3.1. Penalized likelihood approach

The log joint likelihood ofty andA, conditional ony obs, may be written as
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b
in{lik g (my, A| Yobs))= nk%jn(fmul(yobsk |y +8y, Tz ).

Note that there are more parametedirtx(nobst1)) than datar{dinxnobg in the
above, meaning that there are an infinite numbesbmates that maximize the likelihood, each
of which results in a perfect fit to the data.ohder to obtain a unique solution, and to allow for
the existence of observation error, it is necessacpnstrain the parameters somehow. A
common approach is to add a penalty term to thgoliog likelihood, typically taking the form

shown below:
nobs ]
per(A| 3,p3) = kz_lln(fmu|(8k| z(ndim), 8(c,p3))).

Although exppen has the form of a joint probability density fuioct of A, it can be
interpreted in at least two different ways:o® andpd represent parameters describing the
modeler’s subjective prior beli@bout the joint distribution of the elementpthen expen
is properly interpreted as a joint prior distrilautj in which case the datd¢bs) should not be
used to estimate the valueso®f andpd (i.e.,ad andpd are simply the constants that
characterize the uncertainty associated with thdeteo's subjective prior belief). More
commonly, though, expén is treated as though it representsaatual mechanismspecifically,
a stochastic process that gives rise to the elenté, conditional on expikj.). In this second
interpretation of exygen), which is the interpretation that will be assunhede, itis proper to
use the data to estimate the values®andpd. Note that exgfern) cannot be interpreted as a
likelihood, because it does not contain any data.

Summing Inlikjn;) andpengives the penalized log likelihood:
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In(lik pen(Ry.A,3,p3| Yobs))=In(lik j (ny,A| Yobs))+ per(A|63,p3). (@
The parameters to be estimatedayel, d, andpd.

Taking the partial derivative of Eq. (1) with resp& each element qiy gives

nob

k2_1 (ze ) dyobsy -8y - W)),

implying that theconditional(on A) maximum likelihood estimate (MLE) qiy when using the

penalized likelihood is

nobs 1 /nobs
1Y pencon(A) :( El (Zak)_lj Eﬁ kZ_l (ze ) dyobsy _5k)j .

(Note thatod andpd do not appear in Eq. (2).)

The vector of partial derivatives of Eq. (1) takeith respect to the elements of edghs
Te, * ffyobsy —py)- (Esk_l + 26(06,p6)_1)E6k ,
implying that theconditional(on py, givenad andpd) MLE of eachdc when using the penalized
likelihood is
5 pencon(ny| 58,98) = £8(cb,po) (e + Z5(o5,po)) L fyobs ~py). @)
(Note that, unlike Eq. (2)3d andpd do appear in Eqg. (3).)

Solving Eg. (2) and Eq. (3) simultaneously gives

nobs 1 nobs
W penlos.00)=[ 'S (ealon.00)+ 25 2| 'S ol o)+ ) Lryons, | (4

and
0 pen(6d,pd)k = 25(“6’ p6) [ﬂZa + 25(65’ Pf’))_l [ﬁYObSk - uy pen(Gﬁ,pﬁ))-

11



210 The MLE ofy, using the penalized likelihood, is therefore:

Y per(69,p3) = £(08,p8) ({Zey + 23(05,pd)) * (Yobs

211 )
2o (2o +20(05,90)] Y prfod o).

212  For a scalar multiplieg the following limiting case is of special intetes

213 lim Y pen(@L6d,pd), =yobsy . (5)
¢_,oo

214 The above special case is equivalent to estimai@eh element &k as a free parameter.
215 Substitutinguypen andApe{09d, pd) for py andA in Eq. (1) gives the penalized log

216 likelihood profile incd andpé:

) nobs
In{1ik pen pro (53, p3| Y 0bs)) = b |n(fmu|(yobsk\uy 2er(0,p8), ey +E6(0d,p0))
217 . nobsTfndimin(2 ) +In(|£5(c5,p5)))

- = . (6
[Zj +n%b?n0>:ak|)—n%bsln(|>:ak +26(06,p6)|) ©
k=1 k=1

218 3.1.1. Special case: multivariate with constaneoltion error covariance

219 Some of the equations pertaining to the gener& cawain the same for this special case
220 except for removing the subscripfrom the observation error covariance matrix. Bather

221 equations, however, are simplified significantljvo of these are shown below:

222 EqQ. (4) becomes

223 pypen=m(Yobs) (41

224 and Eq. (6) becomes

nobs

In{1ik pen pro(63,p3| Yobs)) =3, In(fmu(yobs, | m(Yobs), 2 + £5(65,p8)))
k=1

225

_(%bsj [{ndimn(2 ) + In(=e])+ In(£3(03, pd)|) - In(|Z& + £5(c5,p5))). (6

12
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243

3.1.2. Special case: univariate with constant odatlEm error variance

In the univariater{dim=1) casey obs andA are replaced byobs<1 vectorsyobs andd,
respectively; and thEe and=d matrices are replaced by the scatz$ andod?, respectively.
Then, Eq. (4) becomes
1Y pen=m(yobs) (4.2)
and Eqg. (6) becomes

Vo(yobs) | e,
2[&0’52+0'52)}. ©2

In(lik pen pro(052 | yobs)): —nobs[ﬁln(z [77) + In(o¢€) + In(09) +

3.2. Marginal likelihood approach

Unless the dimensions of the problem are very sriedte are typically a large number
of possible marginal likelihoods associated with prenalized likelihood, depending on which
parameters are integrated out. For the purposessobaper, the term “marginal likelihood” will
be used to describe the penalized likelihood witly the random effectd] integrated out.

Note that the penalized log likelihood (Eq. (1)hdze rewritten as follows:

] nobs
In(1ik pen(hy. A,65,p3| Yobs)) = 3 In(Frmut( yobsi | py, Zey +Za(05,p5)))

nobs
+ 3 Inf fy| ok
k=1

_ _1\-1
6pencon(lW|<‘5,l)5)k7(>:'3k 1"'25(65’05) l) D

In the above, note that the random effégték=1,2,...nob9 do not appear anywhere in the first
line of the right-hand side, and they appear oslyha variables in a set of multivariate normal
distributions in the second line. They can thenefoe integrated out ¢ikpen l€aving the

following as the log marginal likelihood:

13
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260

] nobs
|n(|lkmar(p,y,cf),p6|YObS)): kz_llln(fmul(YObsk“’«y,Esk "'25(55,05)))- ()

Differentiating the above with respect to the etets ofjly shows that the MLE in the
penalized likelihood approach (Eq. (4)) is alsoMheE in the marginal likelihood approach.

The corresponding log marginal likelihood profigetihus:
] nobs
In{1ik mar. pro( 03, p8| Y0bs)) = 3 |n(fmu|(yobsk\py 2er(00,p3), Zey +£8(06,p8)) ). (©)

3.2.1. Special case: multivariate with constaneolstion error covariance

The equations for this special case are the sarfar $he general case, except for
deletion of the subscritfrom Ze and use of Eq. (4.1) to represent the MLEypfather than

Eq. (4). So, Inlkmay) becomes
) nobs
In(llkmar(uy,cﬁ,pﬁ|Yobs)): kz_l In(fmu|(yobsk|uy,>ls +):6(66,p6))) (7.1

and In(ikmar,pr)) becomes

nobs
3 In(f;ny(yobs, | m(Yobs), Ze + £5(c8,p3))). (8D

In{1ik mar. pro( 03, p8| Yobs)) =

3.2.2. Special case: univariate with constant olatlEm error variance

The univariate form of Inikma;) iS given by

nobs

In(likmar(,uy,aé|yobs)): > In( funi( yob&‘k‘,uy,agz +052D (7.2)
k=1
and the univariate form of lmarpro) IS given by

In(1ik mar,pro (6| yobs)) = n%bsln( fum[ yobs | m(yobs), a2 + aJZD. ©2)
k=1

14



261 3.3. Restricted likelihood approach

262 The restricted likelihood approach was originablyniulated in terms of “error contrasts”
263 (Patterson and Thompson 1971). However, Harnvii8¥4, 1977) showed that a Bayesian

264 interpretation is also possible, by imposing aamif improper prior on the fixed effects (here,
265 py) and integrating them out of the marginal likebldosee Laird and Ware (1982) for a similar
266 exposition). Because an analogous procedure veastabtain the marginal likelihood in Eq.
267 (7), Harville's interpretation will be employed leegtto clarify the relationship between the

268 marginal and restricted likelihood approaches (virmarginal= only random effects integrated

269 out, whereas restrictedmixed effects (i.e., both randoamd fixed effects) integrated out).

)

270 The log marginal likelihood (Eqg. (7)) can be retenit as follows:

b
'Y (Eey +£6(08,p5))
k=1

In(1ik mar( 1y, 65,p5| Y 0bs)) = Sj EEndimD]n(Z ) - In(

nobs

271 + kz_l In(fmm(yobsk‘uy pen(oé,pa),zgk +):5(65,p5)))

nobs

-1
W perlosp0) S (za + Zalo.0) |

+In| fu| ny

272 In the right-hand side of the above, the third alees the form of the log of a
273 multivariate normal distribution ipy. Becausgly does not appear anywhere in the first two

274 lines and appears only as the variable in the thig] it can be integrated out li a, leaving

)

275 the following:

b
" zey + 26(05, p))
k=1

In(likres(cﬁ,pé|Y0bs)):(%J [ﬁndim[ﬂn(ZDz) —In(

276
nobs

+ kZ::l |n(fmul(y0b5k‘lly pen(cﬁ,pa),z.gk +25(¢,5,p5)))_ )

15
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3.3.1. Special case: multivariate with constaneoletion error covariance

In this special case, li;.) becomes

ik pec{ 08,08 0b3) = ndim({In(277) - In(nob3) + In(|£s + £3(c3, p3))

2
nobs

+ ¥ In(fmu(yobs, | m(Yobs), Ee + £3(c5,p5))). (9
k=1

3.3.2. Special case: univariate with constant ofagiEm error variance

In this special case, lit;.) becomes:

In(2G7) - In(nobg + |n(ag2 + 052)
2

In(lik g5( 0 [yobs)) =

nobs

+ kZzl In(funi[ yobsp(‘ m(yobs),as2 +052D. 9.2

4. Maximizing thelikelihoods

Except in some special cases, closed-form solsitiothe MLEs fosd andpd do not
exist for any of the three objective functions (plered log likelihood profile, Eq. (1); log
marginal likelihood profile, Eg. (8); and log rasted likelihood, Eg. (9)). Numerical solutions
are possible, however, at least in principle. Afso each of the three likelihoods, an iterative
algorithm for obtaining the MLE is available. Tierative algorithm for each likelihood is
described in the respective subsection below, alatigclosed-form solutions for some special
cases of particular interest.

4.1. Penalized likelihood approach

An iterative method for maximizing Eq. (6) proceexs shown in the text box labeled
“Algorithm 1.” Algorithm 1 will result in an estiate regardless of whether an interior mode

exists in all dimensions, but if an interior modeed not exist in some dimension(s), the

16
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corresponding element(s) in the estimate®vill be zero. The rank of the estimate of
>8(0d,pd) obtained by iteration will equal the number akmor modes.

4.1.1. Special case: multivariate with constaneolestion error covariance

Two additional approaches are available for theigpease in whiclze is constant.

A recursive method for maximizing Eq. (6.1) prage@s shown in the text box labeled
“Algorithm 2.1.” If the recursive approach failsjs because an interior mode does not exist in
one or more dimensions, which causes the estini@é w be singular, meaning that the
inversion on the right-hand side of the equatiostep 2 cannot be computed.

At equilibrium, the equation in step 2 of the rextue approach can be rearranged to give
the symmetric algebraic Riccati equation

T3 [DLIES + D2 [X5 + 5 [®2+®3=0[1(ndim), (L01)

where®1=Xe ™1, ®2=| (ndim) —yet B/O(Yobs)/Z, and®3=Xg¢. A method for solving this

equation proceeds as shown in the text box labélggrithm 3.1.” If an interior mode does
not exist in all dimensions, some of the eigenvalofethe Hamiltonian in the Riccati approach
will be imaginary. The number of dimensions foriethan interior mode exists will be equal to
one-half the number of real eigenvalues.

4.1.2. Special case: univariate with constant oladem error variance

In this special case, the symmetric algebraic Riezpation reduces to
A + 2R 0% +¢8=0, (102)
where ¢l = o, ¢f2:1—0'£_2 W/o(yobs)/Z, andqﬁ:afz. The roots of Eg. (10.2) are easier to

understand in terms of the derivative of the loggeed likelihood profile (Eq. (6.2)) with

respect tagd
17



oy " nobsi{d? + Vo (yobs) @3+ o2 ) ({062 - Vo (yobs) @3+ oe?)

2)2

0o [6052 + o€
318 Eq. (10.2) has either four real or four complextsodn the event that the roots are real,
319 two of them will be positive, which will correspomal a local minimum and local maximum of

320 Eq. (6.2). Specifically, ifo(yobs)>4lze?, the penalized likelihood profile has a global

JVo(yobs) —yVp(yobs) - 4[>
2

321 maximum at 0, a local minimum at , and a local maximum at

JVo(yobs) + bs) - 4 [we?
322 OOpen= (/0D +vo(yobs) - 412 . (12).

en— 2
323 Eg. (11.2) will be taken to represent the MLE toe penalized likelihood profile, even though it
324 represents only a local maximum, and then only wherresult is a real number. In the event

325 thatvy(yobs)<4lde?, the local extrema disappear, adhe=0.

326 4.2. Marginal likelihood approach

327 The iterative algorithm for maximizing Eq. (8) wlves first computing a pair of
328 matrices, the second of which is a function offtiet. The first of these two matrices is the

329 Hessian matrix corresponding to random effeffjsofily. For the linear-normal model, this
330 matrix, Aran(00,pd), has elementsnobs(i—1)+k, nobd(j—1)+k } equal to elementsi§} of the
331 matrix —X8(c8,pd) L - (X, )1, for alli=1,2,...ndim j=1,2,...ndim andk=1,2,...nobs with
332 all other elements zero. The second makavean(0d,pd), is anndimxndim matrix whose
333 elements are averages, across observations, obtresponding elements of\a,(08,p8) ™" .
334 Thatis, elementi{} of Zave.n(0d,pd) is the average, acroksof elements fobd(i—1)+k,

335 nobs(j—1)+k } of the matrix—Aa:(08,p3) . The iteration proceeds as shown in the text box
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labeled “Algorithm 4.” In the event that the triME of 20 is not positive-definite, this
algorithm will not converge to the true MLE exactlidowever, the resulting estimate will be
positive-definite, and personal experience to datgests that the resulting estimate will be
close to the true MLE.

4.2.1. Special case: multivariate with constaneolstion error covariance

In this special case, the MLEs @d andpd are obtainable in closed form, because Eqg.
(8.1) is simply the product of multivariate nornpabbability density functions, all with the same
variance. The MLEs can be extracted from the ¥alhgy equation:
26(68 1,1 POmar) = Vo(Yobs)-Ze.  (121)
The above is a fairly intuitive estimator. By aualglbe to both sides of the equation, it implies
that, in expectation, the covariance matrix ofdbserved values is equal to the covariance
matrix of the true values (remembering that theaciawce matrices of andA are the same)
plus the covariance matrix of the observation stror

4.2.2. Special case: univariate with constant aladem error variance

Similarly, in this special case, the MLE corresgioig to Eq. (8.2) is:

OOmar = \/ Vp(yobs) - o€’ . @22

It can be shown thatdy., is always greater thaod,en (as given by Eq. (11.2)) (yobs)>oe?.
For the univariate case with constamst one of the methods described by Methot and

Taylor (2011) provides a spectrumad estimators, two special cases of which correspond

the penalized likelihood solution (Eg. (11.2)) andrginal likelihood solution (Eq. (12.2)) given

here. Methot and Taylor suggest incorporatingias‘ladjustment” term into the penalty
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373

function, which can be written, using somewhatet#ht notation than that of the authors (and

correcting a minor typographical error) as:

nobs 2
pefa|os’,a)= 3 |n(funi(5k‘0,0'52D+nObﬂZD]n(UJ |
k=1

wherea is the amount of adjustment. Three differencesfthe approach of Methot and Taylor
should be noted: 1) The objective function use@ Ieintended to be maximized, whereas the
objective function of Methot and Taylor is intendede minimized. 2) The bias adjustment
used hered) is equivalent to 1 minus the bias adjustment wesd by Methot and Taylor. 3)
Although constanoeis assumed for this comparison, the method of Medhd Taylor is not
restricted to this special case, so their biassajant would normally be subscripted by year.
Including the adjustment termin the penalty function has no impact on the pegdl
likelihood estimators ofy or &, but the derivative of the bias-adjusted log pezedl likelihood
profile with respect t@dis (cf. the derivative shown in section 4.1.2):
_ nobsEE(\/m W52 + Vo (yobs) [o0d + Ji-a wgz)x

(«/ﬁ w5 —W@MMWZ)
0’5[6052 +0’£2)2

which, if vo(yobs)>4l{1-a)@e?, implies that the bias-adjusted penalized logilie®d profile

has a local minimum at

\/Vo(yobs) — \/ Vp(yobs) —4{1-a) we?
2L1-a

and a local maximum at
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JVo(yobs) +1/vo(yobs) - 40{L- @) e
20/1-a '

In the special case wheoe0 (i.e., no bias adjustment), the local maximumesponds

to gden and in the special case whereoe?/vo(yobs), the local maximum correspondsddrar.
The value ofa yielding gdnar is asymptotically equal to 1 minus the optimakhkaajustment
reported by Methot and Taylor (for the constamtease).

4.3. Restricted likelihood approach

The iterative algorithm for maximizing Eq. (9)dsmpletely analogous to that used for
the marginal likelihood, except that the Hessiatrixanvolving mixedeffects (i.e., botA and
Hy) is used instead of the Hessian matrix involviagdom effectsh) only. For the linear-
normal model, the mixed-effects Hessian matx;(0d,pd), is an
ndim{hobst1)xndim{hobst1) symmetric matrix, which can be constructedadiews:

* The upper-lefndimnobs<ndimniobssubmatrix is identical tda,(06,pd).

* Elements fiobdndim+i, nobd(j—1)+k} are equal to elements,f} of the matrix
~(ze )71, foralli=1,2,...ndim j=1,2,...ndim andk=1,2,... nobs

* Elements fiobd(j—1)+k, nobdndimti} are equal to elementg,{} of the matrix
~(zey )1, foralli=1,2,...ndim j=1,2,...ndim andk=1,2,...nobs

* Elements fiobdndim+i, nobdndintj} are equal to elements,f} of the matrix

nobs -1 . . . .
-2 (Zsk) ,foralli=1,2,...ndimandj=1,2,...ndim
k=1

The restricted likelihood version of the matEiave,,ix06,p0) is constructed identically to its

marginal likelihood counterpart, except that therages are taken with respect to the elements
21



394  of ~Ami(08,p8) " rather than the elements-ohan(08,08) . The iteration proceeds as shown
395 in the text box labeled “Algorithm 5,” which is idcal to Algorithm 4 except th&@aveyx is

396 substituted fokave,, in step 2. As with the marginal likelihood appebaif the true MLE of

397 Zdis not positive-definite, this algorithm will nobnverge to the true MLE exactly. However,
398 the resulting estimate will be positive-definitedgpersonal experience to date suggests that the
399 resulting estimate will be close to the true MLE.

400 In the article by Methot and Taylor (2011), thedhinethod described on page 1749

401 (after correcting another minor typographical erisasically the univariate special case of
402 Algorithm 5, except that their method uses bisectoorder to speed convergence.

403 4.3.1. Special case: multivariate with constaneolrtion error covariance

404 The MLEs corresponding to Eq. (9.1) are identioahieir marginal likelihood

405 counterparts, except thabbs-1 is used to scale the observation covariancer#thanobs
406  Xd(60;eg, POres) = Vi(YOby —Xe. (131

407 4.3.2. Special case: univariate with constant otag&n error variance

408 The MLE corresponding to Eqg. (9.2) is computed kiny:

409  Oes = Vi(yobs)-ce? . (132)

410 5. Alternative formulations of the estimators
411 5.1. Laplace approximation

412 For models other than the multivariate normal mpdamputing the values tkm, and
413 likesexactly can be cumbersome, because integrating,@mrA andpy, may not yield a closed-
414 form solution for the respective likelihood. Feick models, approximations li&mar andlikes

415 Dbased on Laplace’s method have been proposedTaayson et al. 2015). These involve
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adjusting the log penalized likelihood profile blireear function of the log of the determinant of
the appropriate Hessian matrix, which is then maech numerically. Although the objective
functions obtained by these methods are only apmabe for non-normal models, they are exact
for normal models.

5.1.1. Laplace approximation based on random effacly

For the linear-normal model, the log of the deteami ofAa, is
nobs 4 4
In(|Aran(55’P‘3)|): kz Inu (ZSk) +26(661p6) D!
=1

and the log of the marginal likelihood profllemarpro (EQ. (8)) can be rewritten as

IN(1ikmar. pro (63, p8| Y obs) )= In(lik pen pro (58, p3| Y 0bs))

_In(|A ran (68, p8)|) - ndimobsin(2 )
; .

14

5.1.2. Laplace approximation based on mixed effects

For the linear-normal model, the log of the deteami ofAnx is

|

and the log of the restricted likelihobk,es (Eq. (9)) can be rewritten as:

nobs 1
Y (Zey +X5(0d,pd))

In(|Amix(68,p8)|) = In(|A yan (63, p5)])+ |n(

In(likes( 08, p3|yvec)) = In(lik pen pro(65,pd| Y obs))
_In{|A mix(68,p3)|) - ndimnobs+ 1) (In(2 )
: .

@5

The objective function proposed by Thorson et2016) is of the same type as Eq. (15).

5.2. Reverse-engineering the “known” varianceshia tinivariate case with constaot

For the univariate case with constaat it has so far been assumed that the valueof
known. In fact, Eqgs. (11.2), (12.2), and (13.2)doseem to suggest that this assumption is
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necessary for estimation 0B,en, 0dmar, Or ddes INdeed, some quantities of interest (i.e., things
that might be represented pgbs here) lend themselves to measurement by statigtica
designed field experiments where the quantity seoled directly and from which estimates of
o€ can be obtained, in which case the assumptiongthist known seems reasonable. Other
guantities of interest, however, such as annuahtiems associated with a parameter in a
selectivity function, do not, as such quantities ot observed directly and estimates of
precision do not arise naturally as a result offsarg design.

In the event that the value of is unknown, it can be reverse-engineered by etiptpi
the fact that, just as in the multivariate case \hlue ofod,e, can be obtained by iteration
(moreover, convergence of Algorithm 1 is easy tvprfor the univariate case). Then, the value

of ge can be obtained frowy(yobs) andgd,en by solving Eq. (11.2) fooe as follows:

o€ = \/ 0%pen ‘WVO (yobs) - aépen) . (@162

However, if a quantity is not observed directlyden selectivity parameters are good

examples), not only is it likely thats will be unknown, but it is also likely that thelua of
Vo(yobs) will be unknown as well, in which case Eq. (16a®uld still not appear to solve the
problem of unknowroe. Fortunately, the value ®f(yobs) itself can also be reverse-engineered,
by exploiting the following facts: 1) the univaeaorm of Eq. (5) implies that, asd
approaches infinityyobs is equal to the penalized likelihood estimatg;cind 2) the variance
of y is the same as the variancedof

The purpose of reverse-engineering the valuega@ndvy(yobs), of course, is to enable

their use in estimatingdmar Or ddes by EQ. 12.2 or Eq 13.2 (recalling for the latteait
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vi(yobs)=vy(yobs)nobg(nobs-1)). The methods proceed as shown in the textdiaeled
“Algorithm 6.2” and “Algorithm 7.2,” respectively.

6. Distributions of the closed-for m univariate estimator s with constant o

Closed-form distributions exist for many aspedtthe univariate estimators in the linear-
normal model with constant observation error varg&anThese can be derived by exploiting the
fact that the sample variance of a normal randoriabke is proportional to &2 random
variable. Throughout this section, the followirgngentions are observed:

» The parametef represents the ratiag/ o (note that the denominator here is tilue
value, not the estimated value).
« The parametet is a multiplier applied t@e? (or 8%). Although in principlec could take

any real value, in practice it is restricted to viatues 1 and 4.

o For distributions related to the penalized liketdeestimator (Eq. (11.2)3=4.
o For distributions related to the marginal or reséd likelihood estimators (Eqs.
(12.2) and (13.2)x=1 corresponds to the case wheegs known, anat=4
corresponds to the case whereis unknown, in which case Algorithm 6.2 or 7.2
is used to reverse-engineer the unknown value.
» The parameten has the interpretation implied by the variancerajme vi,(DL

6.1. Probability of obtaining a false positive

As noted in section 1, overparameterization israroon concern of stock assessment
review panels. In the present context, overparanzetion results when the estimated value of

o0is positive even though the true valueddfis zero; that is, the estimate is a “false positiv
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476 In the univariate linear-normal model with constabservation error variance, the cumulative
477  probability of obtaining a false positive is:

478  false_ pos(c,h,nobs) =1- g((c qnobs- h) | nobs-1),

479  whereg(w|d) is the y? cumulative distribution function evaluatedvatvith d degrees of

480 freedom. Examples are shown in Figure 1. Notettireprobability of obtaining a false positive
481 is less than 0.5% for the penalized likelihood apph ¢=4, h=0) at all values ofiobs>1. In

482 contrast, if the value af¢is known, the probability of obtaining a false piee for the marginal
483 likelihood approachdsl, h=0) ranges fromiD.32 atnobs=2 to 0.5 amobsapproaches infinity;
484  while the probability of obtaining a false positifag the restricted likelihood approaatr(,

485 h=1) ranges froniD.16 atnobs=2 to 0.5 asobsapproaches infinity.

486 6.2. Probability of obtaining a false negative

487 The opposite problem, underparameterization |teainen the estimated value @dis
488 zero even though the true valuead¥is positive; that is, the estimate is a “falseateg.” The

489 cumulative probability of obtaining a false negatis:

2
490 false_neg(c,h,nobsﬁ):g(cmnobs—h)[g 'f J|nobs—1}.
B +1

491 Examples are shown in Figure 2 (Figure 2a showgitbleability as a function gf for various
492 values ofnobs while Figure 2b shows the probability as a fumctof nobsfor various values of
493 ). Note that the probability of obtaining a fatsegative in the penalized likelihood approach
494 can be fairly high under certain combination;mobsandf values. For example, for all values
495 of f> \/ﬁ , the probability of obtaining a false negative enthe penalized likelihood

496 approach is greater than 50% for all valuesaids>1. On the other hand, the probability of
26
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514

obtaining a false negative under the marginal siricted likelihood approaches is fairly low
under a very wide range nbbsandf values. For all estimators, the probability btaoning a
false negative varies inversely wift(i.e., the smaller the relative valuead, the less likely it is
to mask the signal provided lsy). For the marginal likelihood and restricted likeod

estimators, the probability of obtaining a falsgatve also varies inversely wittobs For the

penalized likelihood approach, the relationshigesinversely witmobsfor B <./1/3, directly

for #>~159, and non-monotonically foy/3 < < ~159.
6.3. Distribution of the estimators, given preseata false positive

Given that there is some probability of obtaininiglae positive, particularly under the
marginal likelihood and restricted likelihood apacbes, it is natural to wonder how large those
false positive values might be (e.qg., if they &kely to be extremely small, their existence is
unlikely to cause much of a problem). lugtrepresent the ratio of the estimator (eittéyen,
OOnan OF 0deg) t0 0¢. Then, fori=1,2, define a probability density function of tloem

nobs-3

a2 )] 7 e (" ()]

ai(u5|c,h,nobs): - ’
[ 1 J [Ir( nobs 1) [(false pog(c,h,nobg
nobs-h 2
where
-3 _ —1)2
q(ug){uf Ue } and r(u,)= (u«f Ug .
Ug ug2 +1

Important special cases of the functi@asnda, include the following: By setting=4

andh=0, the functiora; gives the distribution o&d,en/ o€, conditional on obtaining a false
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positive, and has rande,oo). The functiora, gives the distribution ofidyar/ o€ (obtained by

settingh=0) or gd.s/ o€ (0btained by setting=1), either withoe known (obtained by setting
c=1) or unknown and therefore reverse-engineerethifodd by setting=4), conditional on
obtaining a false positive, and has rarﬁg{efl,oo).

Figure 3a shows examplesafwith h=0 (upper two panels, corresponding to the
penalized likelihood approactgz with h=0 (middle two panels, corresponding to the maigina
likelihood approach), anab with h=1 (bottom two panels, corresponding to the reslic
likelihood approach). The left-hand column of Figg@a corresponds to the case in whighs
unknown ¢=4), and the right-hand column corresponds to #se e whichoeis known ¢€=1).
Note that the results for the penalized likelihapgroach do not differ for these two cases, so

the top two panels are identical. The lower boahd. is unity for the penalized likelihood
approach,\/é for the marginal and restricted likelihood apptoeswheroeis unknown, and

zero for the marginal and restricted likelihood lm@zhes whewe is known.

Figure 3b shows two statistics associated withptiedability density functiona; anda,,
both plotted as functions abbs It is important to remember that these stagsti® conditional
on the existence of a false positive, the probighati which varies by estimator (Figure 1) and
may be very low (e.g., for the penalized likelihaesdimator). The upper panel of Figure 3b
shows the cumulative probability thattakes a value less than or equal to unity (fumciio
only, because this cumulative probability is essdéigitzero for functiona;), while the lower
panel shows the means of the distributions. Theeupanel of Figure 3b shows that false
positive estimates afd are likely to be smaller thame for both the marginal and restricted

likelihood approaches, with the probability beimgrewhat higher for the restricted likelihood
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approach. The lower panel of Figure 3b showsttl@tnean false positive estimate (relative to
o¢) is greater than unity for all three approachesmudre is unknown, but less than unity for the
marginal and restricted likelihood approaches wbers known (the only exception being

nobs=2 in the restricted likelihood approach, wherertiezan is 1.08).

6.4. Distribution of the estimators, given abseota false negative

If a false negative is obtained, none of the edtinsehas a distribution, being identically
zero by definition. However, it is natural to wandibout the distributions of the estimators in
the event that a false negatigenotobtained. These distributions are slightly maymplicated
than those for the distributions of the false pwess, because they depend®(which functions
as a scale parameter) in additiomtis Letusrepresent the ratio of the estimator (eittiéfen,
Odnan OF 009 tO the true value afid. Again lettingi=1,2, define a probability density function

of the form
nobs-3

$(U6|,5)[E(n0bzs_hj[ﬂi (u5|,8)j2 @XF{—(nObZS_hj % (u5|'3)j

( 1 hj DT(nObZS_lj [{1- false_neg(c,h,nobs A))

nobs-

by (u5| c,h,nobsﬂ)=

where

s(ualﬁ){ 5 ]m(“—f’] and t(ualﬁ){ g Jw[“—"j-

p%+1) \ B p%+1) \ B

The functionb; gives the distribution ofid,en/ 0o (Obtained by setting=4 andh=0), conditional

onnot obtaining a false negative, and has ra()@,eo). The functiorb, gives the distribution of

O&nar/ 00 (Obtained by setting=0) or od.s/ oo (obtained by setting=1), either withge known
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(obtained by setting=1) or unknown and therefore reverse-engineerethifodd by setting
c=4), again conditional onot obtaining a false negative, and has ra({El EB,oo).

Figure 4a is structured similarly to Figure 3a,whng examples ob; (penalized
likelihood approach, top two panels) andmarginal and restricted likelihood approaches,
middle and bottom two panels, respectively), bollemoe is unknown (left column) and known
(right column). The four curves in each panel igiuFe 4a correspond to &2 factorial design

of the parametensobs=10,20 ang3=0.2,0.4. The lower bound afis S for the penalized
likelihood approach,/323 for the marginal and restricted likelihood appiueswheroe is

unknown, and zero for the marginal and restrictieelihood approaches where is known.
Figure 4b shows the cumulative probability thatakes a value less than or equal to

unity, plotted as a function abbs for £/=0.1,0.2,0.3,0.4. The lower limit ofsin each panel is

logi0(2). Figure 4c is analogous, except plotted asatfon of 3, for nobs=10,20,30,40. The

upper limit ofusfor the marginal and restricted likelihood apptoeewheroe is unknown is
J¥3. For all parameter combinations shown, the cutivélgrobability is greater than 50% in

in the marginal and restricted likelihood approacivaenoe is known, but can drop below 50%
in the penalized likelihood approach and in thegmal and restricted likelihood approaches
whenggis unknown ifnobsis sufficiently low and3is sufficiently high.

Figures 4d and 4e are structured similarly to Fegutb and 4c, except that they show the
means of the respective distributions rather thanwative probabilities. All of the estimators
are asymptotically unbiased agbsapproaches infinity an@ approaches zero. Whenm is

unknown, all of the estimators can exhibit subsghbiases (in part because low valuegof
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can result in false negatives), but the penalizesdihood estimator is more biased than the
others except at very low valuesrmafbs(e.g.,<10) or high values @f(e.g., >~0.4), as might be
anticipated from Egs. (11.2) and (12.2). Wimris known, unlessobsis very low (e.g.,<10),
the marginal likelihood estimator is biased jugilgly low and the restricted likelihood
estimator is essentially unbiased, whereas theligeddikelihood estimator can exhibit
substantial biases.

7. Discussion
7.1. The problem of bias in the penalized likelthapproach

Fournier and Archibald (1982, especially their Eg3)) may have been the first to use a
penalized likelihood approach in a fishery stockeasment context. Although a negative bias in
the penalized likelihood estimate of the variantendom effects was noted in the statistics
literature as early as Patterson and Thompson §18%4 bias does not seem to have been
widely appreciated in the stock assessment litegdtr the first couple of decades or so
following Fournier and Archibald (1982).

Maunder and Deriso (2003) gave the first systentegmtment of the (univariate)
problem in the stock assessment literature. Theyemted a simulated example (their Figure 8)
of a penalizedahegativelog likelihood profile with a global minimum at e a local maximum,
and a local minimum that was above the local maxinbut below the marginal likelihood
estimate. Apart from a change of sign, this iditptevely identical to Eq. (6.2), which is
illustrated for two example sets of parameter valneFigure 5rjobs= 10, vg(yobs) = 1, andoe
= 0.40 or 0.49). Depending on parameter valaés,, can be fairly close todn. (€.9., it is

only 13% low for theoe = 0.40 example in Figure 5; best-case scenaders bias as the ratio

oe?Ivo(yobs) approaches zero), or the bias can be fairly snlisi (e.g., 31% low for thee =
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0.49 example in Figure 5; worst-case scenarlo-i§1/3 = 42% low as the ratiaze */vo(yobs)

approaches Ya).

Whether the (biased) penalized likelihood estimedgood enough” will depend on
parameter values, on the difficulty of computinigss biased estimator such@&ar Or 00des,
and on how the assessment author or assessmeweeviperceive the relative risks of
overparameterization versus underparameterizasies rfjext section). In any case, it should be
emphasized that, while the penalized likelihoodhestor is biased, it is surely preferable to the
common alternative of simply guessing at the appatgpvalue(s).

7.2. The problem of over/underparameterization

From a purely semantic perspective, there is naooiswreason to prefer
overparameterization to underparameterization @-versa; both sound like something to be
avoided, and it is not immediately obvious whickvisrse. In linear regression theory, there is a
clear tradeoff: Overparameterized models haveasall but imprecise estimates, while
underparameterized models have biased but prestiseages; and either outcome could be
preferred in a particular context. In the worldishery stock assessment, however, the weight
of opinion seems heavily tilted toward the viewttbeerparameterization is the greater of the
two evils. For example, a Google Scholar searohdacted May 12, 2015) on “stock
assessment” and either “overparameterized or “@rarpeterization” returned 336 results, while
a Google Scholar search on “stock assessment”itdret &underparameterized” or
“underparameterization” returned only 12 resulbs, ratio of 28:1. Ludwig and Walters
(1985), Walters (1997), Helu et al. (2000), Waltmngl Martell (2002), and Hulson and

Hanselman (2014) are among those who have disctissguioblem of overparameterization.
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However, some recent papers have favored includioig time-variability than is
currently customary in stock assessments. For pkawilberg and Bence (2006), Wilberg et
al. (2010), and Martell and Stewart (2014) conctuthat underparameterization can typically be
expected to present greater problems than overgdeaization, at least where catchability and
selectivity are concerned. Nevertheless, manyevestis of stock assessments, for whatever
reason(s), seem to prefer a bias toward underpéeaaation relative to overparameterization.
When developing assessments for such reviewerpgihi@ized likelihood approach’s small
probability of obtaining a false positive and ralaty high probability of obtaining a false
negative may be considered advantages of that agipro

Although the distributions of the closed-form uniate estimators give less (sometimes
muchless) than a 50% chance of a false positive ténative algorithms for the multivariate
case will always result in false positives whendhernumber of parameters with random effects
has been overestimated (i.e., whenever the modateallowed random effects to be estimated
for more parameters than in the “true” model). ld@er, personal experience to date suggests
that the average estimated standard deviationthégparameters with false positives will
typically be a small fraction of the average estedastandard deviations for the parameters that
truly do exhibit random effects, a phenomenon wiight have potential for use as a
diagnostic of overparameterization (i.e., paransetdrose random effects end up with very
small estimated standard deviations can simplyskaraed constant). Along similar lines, when
applying Algorithms 4 and 5 in the multivariate eagersonal experience to date suggests that

slow convergence may also be a useful diagnostiwefparameterization.
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7.3. The problem of nonlinearity/non-normality

Although the methods described here have all besmusked in the context of the linear-

normal model, some of them may be extendable ter @tionlinear or non-normal) models

(Table 2). Specifically, the methods that are nlisty to be candidates for extension to other

models, conditional on approach, are as follow:

Numeric maximization: This method is probably picad for the penalized likelihood
approach only. Closed-form expressions for thegmat and restricted likelihood
approaches in other models are likely unobtainaBie alternative might be to derive the
marginal or restricted likelihoods by the MarkovagchMonte Carlo method, conditional
on user-specified values for the variances of #@melom effects, then repeat the process
enough times to obtain an accurate multivariatdéllprover appropriate ranges and
combinations of those variances. However, theradttive would be tedious at best,
unless the number of parameters exhibiting randiects is very small.

Iteration: This method is potentially extendaldedny of the three approaches. A
possible concern with iterative methods in genisraknsitivity to initial values, although
the demonstrable convergence of Algorithm 1 foruthivariate case is a hopeful sign.
Laplace approximation: This method is potentiakyendable for the marginal
likelihood and restricted likelihood approachesifes not apply to the penalized
likelihood approach). In principle, Laplace apgroation could be used for models with
any number of dimensions. However, this is likelyprove tedious for more than 2-3
dimensions (Thorson et al. 2015).

Reverse-engineered variances: This method is paflgrextendable for the marginal

likelihood and restricted likelihood approachese(aéthis method for the penalized
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likelihood approach is redundant, because it alré@eblves an estimate @fd,en

(obtained by iteration)). Note that this methodswlarived specifically for the univariate

case. However, it can be applied in the multitaer@se by assuming

pd=z(ndimx(ndim-1)/2) and by applying it to each element of éidevector individually.

Thompson and Lauth (2012) and (e.g., Lowe et dl42Provide examples where this

method has already been extended to nonlinear/oonai stock assessment models.

When dealing with nonlinear/non-normal models, igi be advisable to try more than
one method. Although all of the methods presehexd work for the linear-normal model, some
might work better than others in nonlinear/non-narmodels. If one method fails, having
others available to try is convenient.

As noted in section 7.1, Eq. 6.2 has the same gksleape (see Figure 5) as that obtained
by Maunder and Deriso (2003) for a nonlinear/normrad model, which is a hopeful sign that at
least some results for the linear-normal model begxtendable to other models.

When undertaking step #1 of Algorithms 6.2 or h.2 inonlinear/non-normal model, it
may take several tries to find a valueaafsufficiently high that it does not constrain thenaal
deviations but not so high that the solution fealgonverge properly (note that @dincreases,
the number of “effective” parameters increases)alids probably best to start with a
reasonably low value afd and then increase it gradually. Because of thetha some
functions are parameterized in common assessmiéwiase packages (e.g., the double normal
selectivity function in Stock Synthesis, Methot aétzel 2013), it is also possible that one or

more annual deviations may “want” to go te-+4. To minimize the impact of such extreme
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non-normality, such “outlier” deviations should pedly not be considered when making the
determination thawdis no longer constraining the deviations.
7.4. The problem of assuming zero correlations

As noted in the preceding section, extension oftleéhods based on reverse-engineered
variances to multivariate models requires assumpdsg(ndinx(ndim-1)/2); that is, an
assumption that the various vectors of deviatiamshe multivariate case) are uncorrelated. In
practice, this assumption is almost always mad#dok assessment models. Exceptions include
a pair of state-space stock assessment modelsidip@Gdsson (1994) allowed for correlations
between vectors of deviations, but noted that thidyalmost always have to be pre-specified;
and 2) Nielsen and Berg (2014) allowed for corretet between annual vectors of age-specific
fishing mortality rates, but required all of thas@relations either to have the same value or to
follow the process Inf)lJage—age)| for each fge,age} pair. Of course, assuming all
correlations to be zero is parsimonious, in thaaites estimation eidimx(ndim-1)/2
parameters, which again will please stock assedsmelewers with a strong aversion to
overparameterization. However, the consequencdsing so, with respect to model accuracy
or predictive ability, do not appear to have bdwrdughly addressed in the literature on stock
assessment models based on penalized likelihobis igan area that merits further study.
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Text boxes and tables

Algorithm 1.:
1. Setod andpd equal to the values corresponding/gY obs).
2. Fork=1,2,...nobs setd=08pe{00,pd)«.
3. Setod andpd equal to the values that gi¥®(ad,pd)=Vo(4).

4. Return to step 2 and repeat ua® andpd converge.

Algorithm 2.1:

1. Setzdequal toVy(Yobs).

/ ; \
2. SetZs =Y {Yshs)- ive—l v,  w/_ 1.1
. e i — Y AUUD ] | U =1 A\ 7ilaiire jj

3. Return to step 2 and repeat uldlconverges.

4. Setod andpd equal to the values corresponding to the converged vaki@ of

Algorithm 3.1:

-

1. Create a Hamiltonian matrix

|-

2. Compute the eigenvalues and the eigenvector matrix associated with thiklami

i
7

02

.
&
-

[t

<

L1

&
e
[\

3

3. Form a Idimxndimmatrix W consisting of those columns of the eigenvector mat
that correspond to positive eigenvalues.

4. Create a matri¥’1 consisting of the firsddimrows ofW and another matri%2
consisting of the seconalimrows ofW.

5. Computesd=Y2¥1™,

6. Setod andpd equal to the values corresponding®

iX
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Algorithm 4:

1. Setod andpd at the values corresponding\ig(Y obs).

\
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d

ave . (ad 0d),
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3. Setod andpd at the values correspondingZo.

4. Return to step 2 and repeat until the solution converges.

Algorithm 5:

1. Setod andpd at the values corresponding\ig(Y obs).

3. Setod andpd at the values correspondingZo.

4. Return to step 2 and repeat until the solution converges.
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Algorithm 6.2:

1.

2.

Setodat a value high enough thiats essentially unconstrained by.
Estimated by maximizing the penalized log likelihood conditionalah
Setvg(yobs) = vy(0).

Estimategg,en by the univariate special case of Algorithm 1.

Given these estimates @afyobs) andcgd,en estimateoe by Eq. (16.2).

Given these estimates af(yobs) and g, estimategdy,, by Eq. (12.2).

Algorithm 7.2:

1.

2.

3.

Setod at a value high enough thats essentially unconstrained by.
Estimated by maximizing the penalized log likelihood conditionalah
Setvp(yobs) = vy(d) andvi(yobs) = v;(d)

Estimategdyen by the univariate special case of Algorithm 1.

Given these estimates{yobs) andgd.en estimateoe by Eq. (16.2).

Given these estimates\afyobs) and g, estimateodes by Eq. (13.2).
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885 Table 1a. List of Roman symbols used.

Symbol Definition

a distribution of false positive estimates

b distribution of estimates other than false negative
c multiplier applied tcoe?

d degrees of freedom x? distributior

frul multivariate normal density

funi univariate normal density

false_ne probability of obtaining a false negative

false_po probability of obtaining a false positive

g x¥* cumulative distribution functic

h constant used in denominator of variance

I(n) nxn identity matri

[ generic index

] generic index

k observation index

LiKjnt joint likelihood

liKmar marginal likelihood

liKpen penalized likelihood

liKpro penalized likelihood profile

liKres restricted (residual) likelihood

m vector of row means of a matrix

m scalar mean of a vector

n generic sample size

ndim number of dimensions

nfac number of factors

nobs number of observations

pen penalty function

q a function used ia

r another function used i

S a function used i

t another function used im

Us ratio of univariate estimai(given a chosen estimatco og
U, ratio of univariat estimat (given a chosen estimat to go
Vi row-wise covariance matrix of an-columr matrix, with denominatcn—h
Vh scalar variance of enx1 vector, with denominatcn—h
w, w, W generic variable

Xij , Xi, X factor(s)

Yiji Vi, Y randomly time-varying variable(s) of interest
yobs; , yobs; , Yobs observed values of

yvec columns ofY stacked in a single vector

z(n) nx1 vector of zerc
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886 Table 1b. List of Greek symbols used.

Symbol Definition

bias adjustment (=m(b) in Metho and Taylor (2011

ratio of oeto go

ndimrxnobs matrix of time-varying deviations (process errc

ndinx1 vector of deviations in yek (i.e., columrk of A)

ndinrx1 vector of observation errors in yek

a submatrix used to compute the Hamiltonian inRfeeati approach

a second submatrix used to compute the Hamiltani#éime Riccati approach
a third submatrix used to compute the Hamiltonrathe Riccati approach
Euler's gamma function

scalar multiplier

Hessian matrix when only random effects are inalude

Hessian matrix when mixed (both random and fixéffces are included
mean ofy vector

matrix used to compute vector of firnobs1)xndirr residual

pi (3.14159...)

vector of correlation coefficients implicit Z&

covariance matrix of deviations (process errors)

vector of standard deviations implicitZd

covariance matrix of observation errors

nfacxndinr slope matrix used to convex toy

matrix used to compute covariance matrix of finobs1)xndirr residual
2[ndirxndin matrix of eigenvectors used in the Riccati appr

first ndim rows oly

second ndim rows ¥

ndirx1 intercept vector used to convx toy
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889 Table 2. List of methods for each of the threerapphes and three cases. An arrow indicates
890 that the algorithm or equation on the left alsoli@spto the cases spanned by the arrow. A blank
891 cell indicates that the method does not apply ¢ogilien approach/case. For the numeric

892 maximization methods, the “No” entry under “Extebldato other models?” indicates that such

893 extensions would typically be at least very tedious

Penalized likelihood approach:

Linear-normal model case

Multivariate, Multivariate, Univariate, Extendable to
Method variableXe constante constantoe other models?
Numeric maximization Eq. (6) Eq. (6.1) Eq. (6.2) sYe
Iteration Algorithm 1 ee—— Yes
Recursion Algorithm 2.1 ee——) No
Closed form Algorithm 3.1 Eq. (11.2) No
Laplace approximation
Reverse-engineered variances

Marginal likelihood approach:

Linear-normal model case

Multivariate, Multivariate, Univariate, Extendable to
Method variableXe constange constaniog other models?
Numeric maximization Eq. (7) Eq. (7.1) Eq. (7.2) No
Iteration Algorithm 4 —— Yes
Recursion
Closed form Eq. (12.1) Eq. (12.2) No
Laplace approximation Eq. (14) — Yes
Reverse-engineered variances Algorithm 6.2 Yes

Restricted likelihood appr oach:

Linear-normal model case

Multivariate, Multivariate, Univariate, Extendable to
Method variableXe constange constaniog other models?
Numeric maximization Eq. (8) Eq. (8.1) Eqg. (8.2) No
Iteration Algorithm 5 Ees———— Yes
Recursion
Closed form Eq. (13.1) Eq. (13.2) No
Laplace approximation Eq. (15) meeeessssssesssss—— Yes
Reverse-engineered variances Algorithm 7.2 Yes

894
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Figures

Figure 1 Probability of obtaining a false positive. Blsguares: penalized, red diamonds:
marginal, green triangles: restricted.

Figure 2a Probability of obtaining a false negative asiaction of 5. Blue squaresiobs=10,

red diamondsnobs=20, green trianglesiobs=30, purple circlesnobs=40. Upper panel:
penalized, middle panel: marginal, lower paneltrieted.

Figure 2 Probability of obtaining a false negative asiaction ofnobs Blue squares3=0.1,

red diamondsf=0.2, green triangleg=0.3, purple circles=0.4. Upper panel: penalized,
middle panel: marginal, lower panel: restricted.

Figure 3a Probability density functions, anda,. Blue squaresiobs=10, red diamonds:
nobs=20, green trianglesiobs=30, purple circlesnobs=40. Upper panels: penalized, middle
panels: marginal, lower panels: restricted. Leftimn: g; reverse-engineered, right columm:
known.

Figure 3h Upper panel: probability af<1 under pdfs; anda,. Lower panel: Means of pdé
anda,. Blue squares: penalized, red diamonds: marggneén triangles: restricted. Dashed
curves.g; reverse-engineered, solid curvesknown (curves for the penalized approach are the
same for bothu; reverse-engineered aogd known).

Figure 4a Probability density functions, andb,. Blue squares:{obs=10, /=0.2}, red
diamonds: fiobs=10, 5=0.4}, green triangles:{obs=20, 5=0.2}, purple circles: fiobs=20,

[=0.4}. Top panels: penalized, middle panels: nralgibottom panels: restricted. Left column:

o, reverse-engineered, right coluna:known.
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Figure 4b Probability ofu<l in pdfsb; andb, as a function of5. Blue squaresiobs=10, red
diamondsnobs=20, green trianglesiobs=30, purple circlesnobs=40. Upper panels: penalized,
middle panels: marginal, lower panels: restrictedft column:g; reverse-engineered, right
column: g known.

Figure 4c Probability ofu<l in pdfsb; andb, as a function ofobs Blue squares$=0.1, red
diamonds;=0.2, green triangleg#=0.3, purple circles8=0.4. Upper panels: penalized, middle
panels: marginal, lower panels: restricted. Leftmn: g, reverse-engineered, right colunm:
known.

Figure 4d Means of pdf®; andb, as a function of. Blue squaresiobs=10, red diamonds:
nobs=20, green trianglesiobs=30, purple circlesnobs=40. Upper panels: penalized, middle
panels: marginal, lower panels: restricted. Leftmn: g, reverse-engineered, right colunm:
known.

Figure 4e Means of pdf§, andb, as a function ohobs Blue squares5=0.1, red diamonds:
[=0.2, green triangleg=0.3, purple circlesf=0.4. Upper panels: penalized, middle panels:
marginal, lower panels: restricted. Left colunmpreverse-engineered, right coluna:known.
Figure 5 Two examples of the penalized log likelihoodfiedfor the univariate case with
constantoe. Parameter valuespbbs= 10,Vy(yobs) = 1, andoe = 0.40 (blue curve with squares)
or 0.49 (red curve with diamonds). For each values, the dotted vertical line corresponds to
the local minimum, the dashed vertical line coroeg}s to the local maximun@,er), and the

solid vertical line corresponds to the marginatlikood estimateddnay)-
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